
Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics
Research

Blaise Tine, Fares Elsabbagh, Krishna Yalamarthy, Hyesoon Kim
{btine3, fsabbagh, kyalamarthy, hyesoon.kim}@gatech.edu

Georgia Institute of Technology

ABSTRACT
The importance of open-source hardware and software has been
increasing. However, despite GPUs being one of the more popular
accelerators across various applications, there is very little open-
source GPU infrastructure in the public domain. We argue that
one of the reasons for the lack of open-source infrastructure for
GPUs is rooted in the complexity of their ISA and software stacks.
In this work, we first propose an ISA extension to RISC-V that
supports GPGPUs and graphics. The main goal of the ISA extension
proposal is to minimize the ISA changes so that the corresponding
changes to the open-source ecosystem are also minimal, which
makes for a sustainable development ecosystem. To demonstrate the
feasibility of the minimally extended RISC-V ISA, we implemented
the complete software and hardware stacks of Vortex on FPGA.
Vortex is a PCIe-based soft GPU that supports OpenCL and OpenGL.
Vortex can be used in a variety of applications, including machine
learning, graph analytics, and graphics rendering. Vortex can scale
up to 32 cores on an Altera Stratix 10 FPGA, delivering a peak
performance of 25.6 GFlops at 200 Mhz.

CCS CONCEPTS
•Computer systems organization→Multicore architectures.

KEYWORDS
reconfigurable computing, computer graphics, memory systems.

ACM Reference Format:
Blaise Tine, Fares Elsabbagh, Krishna Yalamarthy, Hyesoon Kim, {btine3,
fsabbagh, kyalamarthy, hyesoon.kim}@gatech.edu, Georgia Institute of Tech-
nology, . 2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-
Graphics Research. In MICRO’21: 54th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO ’21), October 18–22, 2021, Virtual Event,
Greece. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3466752.
3480128

1 INTRODUCTION
The emergence of data-parallel architectures and general-purpose
graphics processing units (GPGPUs) has enabled new opportuni-
ties to address the power limitations and scalability of multi-core
processors [25], allowing for new ways to exploit the abundant

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480128

Figure 1: Vortex framework overview.

data parallelism present in emerging big-data parallel applications
such as machine learning and graph analytics. GPGPUs in particu-
lar, with their Single Instruction Multiple-Thread (SIMT) execution
model, heavily leverage data-parallel multi-threading to maximize
throughput at a relatively low energy cost, leading the current race
for energy efficiency (Green500 [30]) and application support with
their accelerator-centric parallel programming models [57] [50].

Architecture research on GPGPUs has mainly focused on simu-
lations [10] [54] [31] [63] [41] [23] that model the hardware archi-
tecture at the Intermediate Language (IL) level (PTX [52], HSAIL
[56]) because of the lack of open-source hardware implementation.
Simulating complex hardware at the IL level can obfuscate several
aspects of the micro-architecture that have a substantial impact on
performance [32]. The recent introduction of full-system ISA-based
GPU model simulations [55] has closed the evaluation gap with
actual hardware but still remains limited as it does not cover other
important areas such as run-time evaluation, power efficiency, relia-
bility, and detailedmicroarchitecture evaluation that can be pursued
when using RTL-level implementation. Several implementations of
open-source GPGPU hardware [1] [21] [16] [4] [17] [11] have been
proposed that provide a detailed micro-architectural description of
various GPGPU’s components. However, these implementations
lack a detailed description of the cache subsystem, which is one
of the most performance-critical components in the GPGPU. Also,
the ISA used in those implementations is custom or proprietary,
restricting application support and wide adoption.

Two recent technological trends provide an opportunity to revisit
and expand open-source GPGPUs for hardware research today:(1)
The emergence of high-end FPGAs in the consumermarket. Today’s
high-capacity FPGAs with floating-point DSPs and large memory
provide high computational capability at a lower energy budget that
makes implementing a full-feature GPGPU with a detailed cache
subsystem operating at a reasonable speed a possibility. (2) The
advent of RISC-V [7] with its free, open, and extensible ISA, provides
a new level of freedom in designing hardware architectures at a
lower cost that leverages its rich ecosystem of open-source software

https://doi.org/10.1145/3466752.3480128
https://doi.org/10.1145/3466752.3480128
https://doi.org/10.1145/3466752.3480128

and compiler tools. Adopting the RISC-V ISA for a GPGPU processor
architecture presents a solid base for wide-range adoption.

Today, graphics acceleration remains an important research
area, as the demand for high-speed higher-quality real-time ren-
dering [39, 46, 64, 65] continues to grow. The current area of GPU
computation for gaming moving to the cloud with Google Sta-
dia [29] and Microsoft xCloud [49] presents new challenges for
graphics computation, including real-time latency, and scalability,
as well as security. However, to the best of our knowledge, no open-
source graphics pipeline infrastructure exists that integrates the
entire software and hardware stacks.

In this paper, we introduce Vortex1, an open-source RISC-V-
based soft GPU for high-end FPGAs (Figure 1). In this work, we aim
to explore the design and implementation of a GPGPU on modern
FPGAs. The challenges of this task are: First, identifying the subset
of the GPGPU ISA that covers the essential capabilities of the SIMT
execution model across modern GPGPUs and still fit on FPGA.
Second, identifying an effective way to implement the GPGPU
microarchitecture on top of the RISC-V ISA while maintaining com-
patibility with the standard. Third, exploring the microarchitecture
suited for FPGAs that maximizes resource utilization.

We particularly focused on minimizing our ISA extension for
two reasons: (1) to utilize as much of the existing open-source
hardware and software ecosystem, and (2) to provide a sustainable
development ecosystem. We argue that one of the most beneficial
findings from this work is that by adding only six new instructions
to the standard RISC-V ISA, The Vortex processor can execute
GPGPU applications and also accelerate the 3D graphics pipeline.

In addition to the standard SIMT microarchitecture components,
Vortex implements a detailed high-bandwidth non-blocking cache
subsystem using a multi-ported multi-bank architecture optimized
for FPGAs. It also integrates a PCIe-based command processor for
communicating with a host processor like conventional GPGPUs.
The platform also implements a robust compiler, driver, and appli-
cation stack supporting OpenCL. We also extended the microarchi-
tecture by implementing texture sampling units [66], allowing the
platform to support graphics rendering. Vortex was designed from
the ground up using elastic pipelines [22] [53], providing consis-
tency across the design and enabling design patterns that make the
code more accessible and extensible for research.

This paper makes the following key contributions:
• We showcase a taxonomy of current GPGPU ISAs and pro-
pose a minimal subset that covers the essential SIMT mi-
croarchitectural capabilities.
• We describe Vortex’s SIMT microarchitecture, its texture
unit implementation, and its rasterization pipeline.
• We detail the implementation of Vortex high-bandwidth non-
blocking cache using a multi-ported multi-bank architecture
optimized for FPGAs.
• We demonstrate the effectiveness of an elastic pipeline on
large multi-threaded architectures and how it is leveraged to
scale the processor up to 32 cores while preserving a good
operating clock frequency.
• We present an evaluation of a PCIe-based soft GPU frame-
work on a modern FPGA.

1The Vortex’s project is available at http://vortex.cc.gatech.edu.

Figure 2: Overview of the graphics pipeline.

2 BACKGROUND ON GRAPHICS
Figure 2 illustrates the main stages of the programmable 3D graph-
ics pipeline:

Geometry Stage: In this stage, incoming vertices from the ap-
plication are transformed to screen-space triangle primitives using
a programmable vertex shader.

Figure 3: Texture
mipmaps.

Rasterization Stage: Triangles en-
tering this stage are traversed pixel-by-
pixel, invoking a fragment shader that
generates the color that is rendered to
the destination buffer.

Texturing: A fragment shader stage
where the pixel color is combined with
texture data (texels). The inputs to the
texturing stage are the normalized texel
coordinates and the filtering mode. Mul-
tiple filtering techniques are used - point,
linear, bilinear, and trilinear. Point sam-
pling returns the nearest texel at the in-
put location, whereas bilinear returns an
interpolated value of the four nearest texels. Trilinear filtering com-
bines the bilinear filtering of adjacent texture surfaces of different
resolutions (mipmaps) (see Figure 3).

Modern GPUs support two types of rendering architectures: 1)
immediate-mode rendering, where triangle primitives are issued
for rasterization in the order they are produced, and 2) tile-based
rendering [60], where the geometry outputs are subdivided and
rasterized on a per-tile basis to reduce memory footprint. Rasteriza-
tion is the most compute and memory intensive stage in the GPU,
mainly dominated by texture sampling, which are memory-bound
[34]. Modern GPUs execute shaders on a multi-threaded processor,
and rasterization is done using fixed-function hardware. It is also
possible to implement the graphics stack entirely in software us-
ing the GPU compute pipeline [43] while maintaining reasonable
performance (1.5-8x slowdown). Larrabee [58] first experimented
with this solution by only accelerating texture sampling and mov-
ing the rest of the pipeline to software. Their texture sampling
unit supported all filtering modes, including mipmapping [26]. We
opted for a software rendering approach following Larrabee where
only texture sampling is accelerated due to limited area on the
FPGA. Software rendering is also useful for Vortex in that it enables
the flexibility of exploring various rendering algorithms on the
platform. Vortex differs from Larrabee in that only rasterization is
offloaded to the FPGA, allowing the geometry processing to execute
concurrently on the host processor for load balancing.

2

ISA
Memory
Model

Threading
Model

Register
File

Thread
Control

Synchro-
nization

Flow
Control

ALU
Operations

Memory
Operations

GPU
Operations

RDNA [2]
GDS, LDS
Constants
Global

Workgroup
Wavefront

32/64 threads

Vector/Scalar
256 VGPRs
106 SGPRs

end threads
thread mask

barrier
wait_cnt
data dep

branch
theead mask

arithmetic
conditional
bitwise

load
store

prefetch

interpolate
tex-sampler

GCN [3]
GDS, LDS
Constants
Global

Compute unit
Wavefront
64 threads

Vector/Scalar
256 VGPRs
102 SGPRs

end threads
thread mask

barrier
wait_cnt
data dep

branch
theead mask
split/join

arithmetic
conditional
bitwise

load
store

prefetch

interpolate
tex-sampler

PTX [52]
Shared, Texture

Constants
Global

Grid/CTA
Warp

32 threads
Scalar predicate barrier

membar
branch
predicate

arithmetic
conditional
bitwise

load
store

prefetch

tex-sampler
tex-load
tex-query

GEM [35] SW
Managed

Root thread
Child tread

256-bit Vec
128 GRFs
predicate

send msg Wait
Fence

branch
SPF Regs
split/join

arithmetic
conditional
bitwise

load
store

interpolate
tex-sampler

PowerVR [61]
Global

Common St
Unified St

USC
32 threads

Vector
128-bit predicate fence branch

predicate

arithmetic
conditional
bitwise

load
store

tex-sampler
iteration

alpha/depth

Vortex
Shared
Global

Compute Unit
Wavefront

Scalar
32-bit thread mask Barrier

Flush Split/Join
arithmetic
conditional
bitwise

load
store tex-sampler

Table 1: Comparing mainstream GPU ISAs with Vortex.

3 GPU ISA
3.1 Taxonomy of GPGPU ISA
Table 1 shows a comparative evaluation of the different ISAs: Nvidia
PTX [52]2, AMD RDNA [2], AMD CGN [3], Intel GEM [35], and
PowerVR mobile GPU [61]. We excluded debugging, exception
handling, and other systems management instructions.

TheThreadingModel:AMDGCN implements 64-threadwave-
fronts that are grouped into compute units (CU). RDNA extended
GCN’s compute units with a WorkGroup that comprises two CUs.
It also introduces a new mode for 32-thread wavefronts. PTX uses
Warp structures to represent wavefronts, each having 32 threads,
and cooperative thread array (CTA) structures representing a group
of warps. CTAs are grouped into grids. GEN architecture is CPU-
centric with root threads that are dispatched and managed by hard-
ware, and child threads that are spawned dynamically from their
parent root thread during shader execution. PowerVR defines a Uni-
fied Shading Cluster (USC) structure that groups multiple threads.

The Memory Model: In addition to global and constant mem-
ories, AMD GPUs implement a dedicated local memory (LDS) that
is shared by all threads within a workgroup and a global shared
memory (GDS) across all workgroups. PTX has one shared memory
structure available at the CTA level and an additional dedicated
memory space for textures. GEM ISA only defines a global memory
space as on traditional CPU architectures, leaving its management
and organization up to software. On PowerVR, shared memory is
modeled by two register banks: a unified store local to ALUs and a
common store local to a USC.

2We should note that using PTX to infer the underlying ISA description is an
approximation.

Register Files: All ISAs support SIMD vector registers, with
AMD having a separate scalar register file. On RDNA, 256 32-bit
vector registers and 106 32-bit scalar registers are accessible to
shader programs. GEM has larger 128 256-bit vector registers per
thread and supports predication with predicate registers. PowerVR
has 128-bit SIMD vector registers and predication is also supported.

Thread Control: GEM ISA uses message-passing instructions
to handle thread communication with other hardware components
inside the processor. It is used to control thread spawn and ter-
mination. AMD uses a thread mask to control threads’ activation
and provides a dedicated ENDPGM instruction for terminating a
wavefront. PTX uses predication to control thread activation.

Synchronization: Barrier and memory fence are supported on
all architectures. AMD ISA defines an explicit WAIT_CNT instruc-
tion for flushing previously issued instructions and data dependency
counter instructions (VM_CNT, VS_CNT). GEM uses message pass-
ing for thread synchronization and memory fence. PTX provides
explicit barrier andmembar instructions for thread synchronization
and memory fence, respectively.

Flow Control: Standard branch instructions are provided on all
ISAs. For the special cases of control-flow divergence, predication
or thread masks can be used by applications to control thread
activation. GCN and GEM provide explicit split/join instructions for
compilers to annotate the code blocks at divergent and convergent
points, respectively.

ALU Operations: Standard integer and floating-point arith-
metic operations are supported on all ISAs. Double, single, and
half-precision floating-point formats are also supported, with the

3

exception of PowerVR, which doesn’t have double precision. Vector-
specific instructions are also supported for shuffling elements or
performing a reduction operation.

Memory Operations: GEM ISA implements memory load/s-
tore and atomic operations via message passing. Prefetching is
done in hardware automatically. In addition to standard load/store
operations, RDMA, CGN, and PTX ISAs provide explicit memory
prefetching instructions.

GPU Operations: Texture sampling instructions are defined
on all ISAs, the same as for non-texture resources like depth and
stencil buffers. PTX adds explicit instructions for loading pre-filterd
texture data and querying texture states. On GEM, all texture query
and filtering operations are handled via message passing. RDNA,
CGN, and GEM provide explicit instructions for interpolating gra-
dient values. PowerVR has dedicated graphics instructions for pixel
iteration, alpha testing, and depth testing.

In summary, most GPGPU architectures that support the SIMT
execution model share the following features: 1) some threading
and memory hierarchy, 2) thread control and synchronization struc-
tures, and 3) memory synchronization. In designing the Vortex ISA,
we couldn’t support predication because of RISC-V dependency.
To support thread divergence, we couldn’t rely on using registers
to store the divergence stack as it is done in AMD GPUs because
RISC-V doesn’t have enough free registers. We opted for an explicit
split/join instruction within the internal hardware architecture. We
also opted to support a texture sampling instruction for graphics
workloads because texture lookup operations are usually a perfor-
mance bottleneck in the software rendering pipeline. For memory
synchronization, we leveraged the RISC-V fence instruction.

3.2 Vortex ISA
Vortex extends the RISC-V ISA to support GPGPUs by adding six
new instructions: wspawn, tmc, split, join, bar, and tex, as shown
in Table 2. They are all RISC-V R-Type instructions and fit in one
opcode. They provide minimal ISA addition to handle wavefront
activation, thread control, control divergence, synchronization, and
texture filtering, the essential computational primitives to support
SIMT execution model and graphics processing.

Wavefront Control: We propose a wspawn instruction to ac-
tivate a number of wavefronts at a specific program’s PC value,
enabling multiple instances of that program to execute indepen-
dently.

Thread Control: We propose a tmc instruction to activate or
deactivate threads within a wavefront via a thread mask register,
which is also accessible via the control status registers (CSRs).

Control Divergence:We propose the split and join instructions
to handle control divergence. The split instruction pushes infor-
mation about the current state of the thread mask and the branch
predication result for all threads into a hardware-immediate post-
dominator (IPDOM) stack [40], and the join instruction pops this
out during reconvergence.

Synchronization:We propose a bar instruction to synchronize
wavefront execution at barrier locations. A barrier is released when
an expected number of wavefronts reach it. In addition, the barrier
ID encodes whether it has local scope (intra-core) or global scope
(inter-core).

Instructions Description

wspawn %numW, %PC Wavefronts activation
tmc %numT Thread mask control
split %pred Control flow divergence

join Control flow reconvergence

bar %barID, %numW Wavefronts barrier
tex %dest, %u, %v, %lod Texture sampling/filtering
Table 2: Proposed RISC-V Vortex ISA extension.

Texture Filtering: We propose a tex instruction for texture
lookup. The instruction follows the R4 type format of RISC-V ISA,
currently used for FMA operations. It has three source operands,
namely, u, v, lod, which specify the normalized coordinates of the
source texel and the texture mipmap to use for the lookup. Other
texture states (dimension, format, filtering mode, addressing mode,
and memory address) are configurable via CSRs.

4 HARDWARE IMPLEMENTATION
4.1 Vortex Microarchitecture
Figure 4 details the various components of the Vortex microarchi-
tecture, which implements a standard five-stage in-order RISC-V
pipeline augmented by the following SIMT hardware components:
1) hardware wavefront scheduler that contains the PC, thread mask
registers, and an IPDOM stack - 2) banked GPRs that contain the
general-purpose registers for each thread in each wavefront - 3)
high-bandwidth caches with parallel access by the threads in the
active wavefront - 4) barrier control module for wavefront-level
synchronization. The processor implements a scalable architecture
that allows clustering of multiples cores with optional L2 and L3
caches. A command processor (AFU) manages the onboard memory
system and the communication with the host processor via PCIe.

4.1.1 Wavefront Scheduler. The wavefront scheduler in the fetch
stage decides what to fetch from the I-cache (see Figure 4). It has two
components: 1) a set of wavefront masks to choose the wavefront
to schedule next and 2) a wavefront table that includes private
information for each wavefront. The scheduler uses four thread
masks: 1) an active wavefront mask, each bit indicating whether
or not a wavefront is active, 2) a stalled wavefront mask indicates
which warps should not be scheduled temporarily, 3) a barrier
mask for stalled wavefronts waiting at a barrier instruction, and
4) a visible wavefront mask to support hierarchical scheduling
policy [51]. In each cycle, the scheduler selects one wavefront from
the visible wavefront mask and invalidates that wavefront. When
a visible wavefront mask is zero, the active mask is refilled by
checking which wavefronts are currently active and not stalled.

4.1.2 Threads Masks and IPDOM Stack. To support SIMT, a thread
mask register and an IPDOM stack have been added to the hardware,
similar to other SIMT architectures [28]. When a split instruction
is executed by a wavefront, the predicate value for each thread is
evaluated. In the case of divergence, 1) the current thread mask is
pushed into the IPDOM stack a as fall-through; 2) the active threads
with false predicate are pushed into the stack with the next PC;

4

Figure 4: Vortex microarchitecture.

and 3) execution resumes with the thread mask set to the active
threads with true predicate. When a join instruction is executed,
the stack is popped and the thread mask is set to the stored value.
If the popped entry it is not a fall-through, execution resumes at
the stored PC.

4.1.3 Wavefront Barriers. Barriers are provided in the hardware
to support synchronization between wavefronts. A barrier table
keeps the following information for each entry: 1) a counter of the
number of wavefronts left that need to execute the barrier, and 2)
a mask of wavefronts stalled by the barrier. A similar table is also
used for global barriers in multi-core configurations where the MSB
of the barrier ID indicates global scope. When a barrier instruction
is executed, the processor updates the barrier counter and mask
accordingly. If the counter is zero, the mask is used to release the
stalled wavefronts.

4.1.4 Memory system. Each core has an instruction cache and data
cache. An optional shared memory is also available that can act as
scratchpad memory or a stack depending on the application. Cores
can be grouped into a cluster that can optionally be attached to
a shared L2 cache. Clusters can share an optional L3 cache. Flush
operations among caches are provided as a means of providing
weak coherent memory space.

4.2 3D Graphics Support

Algorithm 1 Trilinear Filter

0: function Trilinear(𝑠𝑡𝑎𝑔𝑒 , 𝑢, 𝑣 , 𝑙𝑜𝑑)
0: 𝑎 ← tex(stage,u,v,lod)
0: 𝑏 ← tex(stage,u,v,lod+1)
0: return LERP(𝑎, 𝑏, FRAC(𝑙𝑜𝑑))
0: end function=0

4.2.1 Hardware Texture Filtering . The hardware implements con-
figurable texture units for graphics support. Each texture unit imple-
ments point sampling and bilinear sampling on 1D and 2D textures
given (u, v) source coordinates and a lod operand to specify the level
of detail in the texture. Advanced filtering algorithms like trilinear
or anisotropic filtering are implemented as pseudo-instructions,

Figure 5: Texture unit microarchitecture.

invoking multiple tex instructions to average of filtering operations
across mipmaps (see algorithm 1). The implementation supports
various texture formats and texture wrap modes as defined by
OpenGL[12].

4.2.2 Texture Unit Microarchitecture. Figure 5 shows the microar-
chitecture of a texture unit. It implements three main stages - the
texture address generator 1 , the texture memory system 2 3 4 ,
and the texture sampler 5 . The device is configured via CSRs by
the kernel, and the number of active texture states is configurable.

When a tex instruction is issued to the texture unit, the u, v, lod
arguments are used to retrieve the relevant control information for
the texture operation from the CSRs 0 . The mipmap-specific base
address, along with wrap and stride information from the CSRs, are
passed to the address generator, where, given the filtering mode,
point or bilinear, the (u, v) values are converted to texel addresses
(single for point and quad for bilinear) for all the threads in parallel
1 . These texel addresses, along with metadata - wavefront-id, for-
mat, and blend values - are passed to the texture memory unit. The
texture memory unit first de-duplicates memory accesses that are
repeated across threads 2 . The batch of unique addresses, along
with instruction metadata, are passed to the texel memory sched-
uler for issue to the data cache 3 . Upon the cache response, the
returned texels are duplicated and piped into a buffer waiting to
feed the texture sampler 4 . Only when all the texels in the batch
have returned does the scheduler begin servicing the next batch.
The texel sampler performs a format conversion and a two-cycle
bilinear interpolation on incoming texels. Finally, a filtered RGBA
color is generated per thread and sent out of the texture unit 5 .

5

Figure 6: High-bandwidth cache.

This sampler closely resembles the sampler in [68], the difference
being that their implementation runs on a different mobile graphics
API with custom bit-widths, whereas our sampler supports OpenGL
color formats. The texel sampler implements only bilinear filtering.
Point sampling is executed using bilinear filtering with blend values
of 0. Although point sampling would have only taken one cycle,
the overhead of muxing and synchronization required to support
a variable-latency sampler delay is not worth a single cycle gain.
The texture unit microarchitecture is inspired by [27] and [68].

4.3 High-Bandwidth Caches

Algorithm 2 Virtual Ports Assignment

for 𝑖 ← 1 to 𝑁𝑈𝑀_𝑅𝐸𝑄𝑆 do
𝑚 ← (𝑟𝑒𝑞.𝑙𝑖𝑛𝑒 [𝑖] == 𝑏𝑎𝑛𝑘.𝑙𝑖𝑛𝑒 [req.bank[𝑖]])
if (req[𝑖]) 𝑝𝑜𝑟𝑡𝑠 [𝑖%𝑁𝑈𝑀_𝑃𝑂𝑅𝑇𝑆] ←𝑚

end for=0

Modern GPGPUs [15] [48] [14] today integrate non-blocking
high-bandwidth (NBHB) caches to mitigate the memory pressure,
allowing the cache subsystem to process multiple independent
requests concurrently. NBHB caches implemented on FPGAs use
different techniques to reduce the high cost of ports in memory
devices: 1) multi-banking [38], the common solution, partitions the
cache into single-ported banks, which introduces bank conflicts;
2) virtual multi-porting or multi-pumping [20] exploits the higher
clock speed of memory devices to process multiple requests using
bus time-sharing. This solution is constrained by the clock speed of
the memory to operate at 2x the base frequency; 3) the Live-value
Table (LVT) [42] approach replicates the memory for each read and
write port and maintains separate LVT storage to keep track of the
memory block holding recently written addresses. LVT caches have
higher area and storage requirements compared to the previous
approaches. Our implementation use a hybrid solution that extends
multi-banking with virtual ports exploiting cache line locality.

Figure 6 describes the high-bandwidth cache microarchitecture
used in Vortex. It is a multi-banked, non-blocking pipelined cache

Figure 7: Elastic pipeline request.

architecture. Each bank maintains its own miss status holding reg-
ister (MSHR) to reduce miss rate, a solution adapted from [8]. The
pipeline has four-stages: 1) schedule, where the next request into
the pipeline is selected from the incoming core request, the memory
fill, or the MSHR entry, with priority given to the latter; 2) tag ac-
cess; a single-port access to the tag store; 3) data access, single-port
access to the data store; 4) response, handling core response back
to the core. At the back-end is the bank merger where outgoing
responses from the banks are coalesced based on their request tag.
The front-end of the cache is the bank selector where the incoming
core requests are assigned to individual banks based on their ad-
dress. The bank selector also resolves bank conflicts by selecting
a single request going into a bank at the time. If virtual ports are
enabled, the bank selector will coalesce requests that map to the
same bank and the same cache line. Algorithm 2 shows the pseudo-
code of the virtual port selection where a modulo operation is used
to update the matching valid bit of each port. Using virtual ports in
this scheme is efficient in two ways: 1) minimal storage is needed
for the virtual ports as we only need to store the word offsets for
each port in the MSHR; 2) the output of the data access, which is a
full block, can now be fully utilized during reads. A deadlock inside
the cache can occur in two ways: 1) when the MSHR is full and a
new request is already in the pipeline, and 2) when the memory
request queue is full and there is an incoming memory response.
We mitigate the MSHR deadlock by using an early full signal before
a new request is issued. We mitigate the memory deadlock similarly
by ensuring that its request queue never fills up.

4.4 Elastic Pipelines
Vortexwas designedwith the primary goal for architecture research;
it was important at the beginning to set the foundations that would
make it easier to maintain and modify the hardware architecture.
We originally explored using a hardware construction language
(HCL) [9] [5] [62] but reverted back to using Verilog for greater
adoption and reach. We implemented Vortex from the ground up
enforcing elastic [22] [53] [33] design patterns across all main archi-
tecture components, sub-components, including libraries (arbiters,
muxes, crossbars, etc.). Maintaining this consistency throughout
the codebase makes it possible to support the following features:
1) extensibility: the elastic handshake protocol is simple and intu-
itive, allowing flexibility for easy extensions, and 2) tracing and
debugging support: elastic-based pipeline requests are assigned
tags, which consist of the instruction PC and wavefront identifier
that track the life cycle of instructions and other request types
inside the processor. We leveraged SystemVerilog’s Interface con-
struct to implement all the elastic connections in the design. Figure
7 illustrates an example for the instruction fetch request issued
from wavefront scheduler as it enters the instruction cache and
exits as a new response interface carrying the fetched instruction
while still preserving its original tag as it enters the decode stage.

6

Figure 8: Vortex simulation stack.

4.5 Hardware Simulation
Vortex integrates an advanced simulation infrastructure to validate
the implementation and perform design-space exploration. Figure 8
shows the Vortex simulation stack, which includes four simula-
tion environments: 1) OPAE driver uses Intel’s proprietary AFU
Simulation Environment (ASE) [36] to simulate the full design; 2)
VLSIM driver uses Verilator [59] to simulate the full RTL design
and implements the AFU interface and memory simulation in soft-
ware; 3) RTLSIM driver simulates the processor RTL without the
command processor (AFU) to emulate SOC environment where the
host and accelerator share the same memory interface; 4) SIMX
driver implements a cycle-level simulator for Vortex and is ideal for
architecture design-space exploration. All drivers share a common
API that applications use when executing on the platform, whether
it is targeting the actual FPGA or a specific simulator.

5 SOFTWARE SUPPORT
5.1 Vortex Driver Stack
The Vortex software stack primarily integrates a driver for handling
the kernel interface to access the FPGA via the PCIe bus. Figure 9
shows the FPGA driver connections.

We use OPAE (Open Programmable Acceleration Engine) [36], a
lightweight user-space open-source C library, as a driver to provide
abstractions of FPGA resources as a set of features accessible for
software running on the host. It configures the FPGA, read/write
instructions, and data to/from the RAM present on the FPGA. It
uses the CCI-P (Core Cache Interface) protocol to assign a shared
memory space, accessible by the Accelerator Functional Unit (AFU)
and host, for data transfer. The data is read from the shared space
and written into FPGA local memory. Vortex is then reset to start
execution, and once the operation is complete, the result is stored
in local memory. The result data is then moved from local memory
to the shared space accessible by the host using MMIO.

5.2 OpenCL Compiler and Runtime
OpenCL is the main parallel API supported on Vortex. We used
the POCL [37] open-source framework to implement the compiler
and runtime software for OpenCL. The POCL compiler back-end
was modified to generate kernel programs targeting the Vortex ISA
and the POCL runtime was modified to access the Vortex driver,
enabling communication with the FPGA via PCIe.

Figure 9: Vortex driver stack and frame buffer connection.

Figure 10: Runtime system for Vortex.

Figure 11: Vortex binary generation steps for OpenCL appli-
cations.

5.3 Vortex Native Runtime
The Vortex software stack implements a native runtime that exposes
the new SIMT functionalities provided by the RISC-V ISA extension
and basic resource management API to kernel programs running
on Vortex. Figure 10 shows an overview of the runtime system.
We statically link the runtime library with OpenCL kernels during
POCL compilation.

We modified the POCL runtime, adding a new device target to
its common device interface to support Vortex. The new device
target is essentially a variant of the POCL basic CPU target with
support for pthreads and other OS dependencies removed to target
the NewLib interface. We also modified the single-threaded logic
for executing work-items to use Vortex’s pocl_spawn runtime API.

5.4 POCL Backend Compiler
The POCL back-end compiler is responsible for generating the
OpenCL kernel binaries given their source code, as shown in Fig-
ure 11. We modified POCL to achieve the following goals: (1) sup-
port RISC-V by adding new devices and compiler support (the
details of RISC-V support is discussed in [13]), (2) support new
Vortex instructions, (3) integrate with Vortex runtime system.

7

Figure 12: Shader compilation pipeline.

1 int main(kernel_arg_t* arg) {

2 // configure texture unit

3 csr_write(TEX_ADDR (0), arg ->src_ptr);

4 csr_write(TEX_MIPOFF (0), 0);

5 csr_write(TEX_WIDTH (0), arg ->srcW);

6 csr_write(TEX_HEIGHT (0), arg ->srcH);

7 csr_write(TEX_FORMAT (0), arg ->format);

8 csr_write(TEX_WRAP (0), arg ->wrap);

9 csr_write(TEX_FILTER (0), arg ->filter);

10

11 shader_state_t state;

12 state.arg = arg;

13 state.tileW = arg ->dstW;

14 state.tileH = arg ->dstH;

15 state.deltaX = 1.0f / arg ->dstW;

16 state.deltaY = 1.0f / arg ->dstH;

17

18 // launch rendering tasks

19 spawn_tasks(shader , state);

20 }

Figure 13: A sample code kernel with texture rendering.

5.5 Graphics Support
The Vortex graphics API implements the OpenGL-ES specification
with the geometry processing running on the host processor and
the rasterization pipeline running as a kernel on the Vortex parallel
architecture. Running geometry processing on the host allows the
accelerator to fully utilize its processing resources for the more
compute-and-memory-intensive rasterization tasks. The rasterizer
implements basic point, line, and triangle primitives, and fragment
processing including depth, stencil, fog, and alpha tests. Texture
sampling is accelerated via the new tex instruction, which executes
as part of the fragment shader. The rasterizer’s implementation fol-
lows Larrabee [58]’s tile-rendering algorithm, with the rasterization
tiles generated on the host.

Figure 12 shows an overview of the compilation pipeline for Vor-
tex programs, which also includes a step for compiling the graphics
shaders. The LunarGLASS [47] compiler internally uses LLVM [44]
Clang as part of its front-end to process the source kernel code into
the LLVM IR (through SPIR-V to LLVM IR conversion). The LLVM-
IR program is passed to the POCL [37] compiler with additional
information, including the Vortex runtime and the graphics kernel
template, to generate the final Vortex program. Figure 13 shows
a code-snippet of a kernel that invokes a shader with texture fil-
tering. The texture sampler states are programmed via CSRs (lines
3-9); then, the kernel spawns the shader execution on the available
hardware threads (line 19).

6 EVALUATION
6.1 Experimental Setup
Our evaluation setup consisted of a 3.5 GHz Intel Xeon E5-1650
for the host processor. For the benchmarks, we use a subset of the
Rodinia [19] OpenCL kernels. We classified the benchmarks into a
compute-bounded group that includes sgemm, vecadd, and sfilter,
and a memory-bounded group that includes sxapy, nearn, gaussian,
and bfs. To evaluate the texture engine, we use three synthetic
benchmarks to exercise the supported filtering modes, including
point sampling, bilinear filtering, and trilinear filtering. The texture
benchmarks all use a 1080p source texture as input and renders it
into a destination render target of the same size. We synthesized
Vortex RTL on both Intel Aria 10 GX FPGA and Intel Stratix 10
FPGAs with speed grade 2.

6.2 Microarchitecture
6.2.1 Design Space Configurations. In Vortex design, we can in-
crease the data-level parallelism by either increasing the number
of threads or increasing the number of wavefronts. Increasing the
number of threads is similar to increasing the SIMD width and
involves the following changes to the hardware: 1) increasing the
GPR memory width for reads and writes, 2) increasing the number
of ALUs to match the number of threads, 3) increasing the register
width for every pipeline stage after the GPR read stage, 4) increas-
ing the arbitration logic required in both the cache and the shared
memory to detect bank conflicts and handle cache misses, and 5)
increasing the number of IPDOM entries. Increasing the number
of wavefronts does not require increasing the number of ALUs
because the ALUs are multiplexed among wavefronts. Increasing
the number of wavefronts involves the following changes to the
hardware: 1) increasing the logic for the wavefront scheduler, 2)
increasing the number of GPR tables, 3) increasing the number of
IPDOM stacks, 4) increasing the number of register scoreboards,
and 5) increasing the size of the wavefront table. It is important
to note that the cost of increasing the number of wavefronts is
dependent on the number of threads in that wavefront; thus, in-
creasing wavefronts for larger thread configurations becomes more
expensive. This is because the size of each GPR table, IPDOM stack,
and wavefront table is dependant on the number of threads.

4W-4T 2W-8T 8W-2T 4W-8T 8W-4T
LUT 21502 36361 16981 37857 24485
Regs 32661 54438 24343 57614 34854
BRAM 131 238 77 247 139
f(MHz) 233 224 225 224 228

Table 3: Synthesis results for different core configurations.

Table 3 shows the area costs of various configurations of a pro-
cessor core as we increase the number of wavefronts (i.e. 4W, 8W)
or the number of threads (i.e. 4T, 8T). Figure 14 shows the cor-
responding performance at the different configurations. Moving
from a 4W-4T configuration3 to a 2W-8T configuration, maximizing
3the configuration is per core.

8

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

sgemm vecadd sfilter saxpy nearn

IP
C

4W-4T 2W-8T 8W-2T

4W-8T 8W-4T

Figure 14: IPC results for different core configurations.

threads, introduces a 69% area cost increase in LUT and registers,
as well as a speedup of 20% for sgemm. However, changing the
configuration to 8W-2T, maximizing wavefronts, generates cheaper
hardware, about a 27% area reduction. This comes with a reduction
in performance in terms of IPC, 36% for sgemm in the extreme
case. The 8W-4T configuration has some performance gains and a
relatively less expensive area. We picked 4W-4T primarily to allow
scaling to 16/32 cores on the target FPGAs while achieving good
performance.

6.2.2 Area Cost. We managed to fit a baseline processor configu-
ration with up to 16 cores on the Intel Arria 10 (A10) and up to 32
cores on the Intel Stratix 10 (S10) FPGA where we reached scaling
up to 32 cores at a 200 MHz clock speed.

Figure 15: Area
distribution.

Figure 16: GDS
layout.

Figure 17: Power
density.

cores ALM Regs BRAM DSP fmax FPGA
(%) (%) MHz
1 13 78K 10 2 234 A10
2 19 111K 15 5 225 A10
4 30 176K 25 9 223 A10
8 53 305K 45 19 210 A10
16 85 525K 83 38 203 A10
32 70 1057K 23 20 200 S10

Table 4: Hardware synthesis for all core configurations.

Table 4 shows the synthesis summary of the processor at differ-
ent core configurations, and a breakdown of the area utilized by the

main components is shown in Figure 15. At eight cores, 53% of Arria
10 FPGA’s logic is utilized and that cost is occupied primarily by
the texture units and caches (16KB for L1 caches and shared mem-
ory). The FPU area is relatively low because we utilize the existing
floating-point DSP blocks on the device for FMA computations.

Figure 18: Vortex performance scaling.

6.2.3 Performance Scaling. Figure 18 shows the performance scal-
ing of the Vortex processor at various core configurations on the
FPGA in terms of IPC. For the compute-bounded benchmarks, the
IPC increases almost linearly with the addition of cores into the
processor. For the memory-bounded benchmarks, the results still
see some IPC increase with the core count, with the exception of
the nearn program, which is also compute-bound with an expensive
long-latency floating-point square-root operation inside its kernel.

6.3 High-bandwidth Cache

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1

2

3

4

5

6

7

8

9

sgemm vecadd sfilter saxpy nearn

Ba
nk

 U
til

iza
tio

n
(%

)

IP
C

1-port IPC 2-ports IPC

4-ports IPC 1-port Util

2-ports Util 4-ports Util

Figure 19: The effect of multi-port caches.

We analyzed the performance of our high-bandwidth caches
for our baseline 4W-4T processor configuration. For this setup, we
focused only on single-core performance and varied the number of
virtual ports on the data cache bank. We need to point out that only
the data-cache implements virtual-multi-porting. The instruction
cache doesn’t need it since SIMT execution needs to fetch only one
instruction at a cycle. Table 5 shows the synthesis summary of a

9

0

100

200

300

400

500

600
Po

in
t

Bi
lin
ea
r

Tr
ili
ne

ar

Po
in
t

Bi
lin
ea
r

Tr
ili
ne

ar

Po
in
t

Bi
lin
ea
r

Tr
ili
ne

ar

Po
in
t

Bi
lin
ea
r

Tr
ili
ne

ar

1 2 4 8

Ex
ec

ut
io

n
tim

e
(m

s)

of cores

SW HW

Figure 20: HW Texture acceleration vs software.

4-bank data cache, with 1-port, 2-port, and 4-port virtual multi-
porting enabled. four ports is the maximum setting possible, which
improves the worst-case scenario where all four requests go to the
same bank and occupy the four individual virtual ports on that
bank. The port increase from one to two adds a 9% increase in logic
area and from one to four adds a 25% increase. Figure 19 shows the
data cache bank utilization for each virtual port configuration. A
100% bank utilization means that all requests that were issued did
not directly experience bank conflicts and that all stalls originated
from the banks’ input FIFOs being full. sgemm and vecadd are
the two benchmarks that mainly experienced high bank conflict
with bank utilization at 67% and 71%, respectively. Increasing the
number of virtual ports linearly increases the bank utilization of
those benchmarks up to 100%. Figure 19 shows each benchmark
performance for each virtual port configuration, and we observe
that sgemm considerably benefits from this optimization vecadd IPC
also increases by a slight amount, but the change doesn’t show well
due to chart scale. The 2-port configuration has the best balance
between improved utilization and cost.

1-port 2-port 4-port

LUT 10747 11722 13516
Registers 13238 13650 14928
BRAM 72 72 72

Frequency (MHz) 253 250 244

Table 5: Virtualmulti-ported 4-bank cache synthesis results.

6.4 Texture Sampling
Our evaluation of the texture acceleration is based on synthetic
benchmarks that directly exercise the custom hardware. We eval-
uated point sampling, bilinear sampling, and trilinear sampling.
As discussed in Section 4.2.1, trilinear sampling is implemented
as a pseudo-instruction around the accelerated bilinear sampler.
We compare Vortex acceleration (HW) with a rendering pipeline
with no acceleration where the texture unit is implemented fully in
software(SW). Figure 20 shows the performance difference between
software and hardware texture acceleration for different processor
core configurations. We observe that the point-sampling difference
is very negligible across all core configurations. This is expected
because, as mentioned in Section 4.2.1, point sampling acceleration

Figure 21: The effect of memory scaling on performance.

shares the sample filter back-end with bilinear sampling to reduce
area cost along with the fact that the feature is not commonly
used. Also, the source texture used in this experiment has an RGBA
format, meaning format conversion is unnecessary, causing the
point-sampling software code to turn into a simple copy operation.
The bilinear filter, on the other hand, shows more improvement,
with an almost 2x speed up on a single core where the memory
bandwidth is less saturated. As the core count increases, that speed
is slightly reduced due to memory bandwidth. Trilinear filtering
also better with hardware acceleration although the gains are not
as strong when compared with bilinear filtering, mainly due to
memory bandwidth since trilinear doubles the number of requests
to the memory. Looking at texture acceleration standalone, we also
observe the effect of memory contention as the number of cores
increase.

6.5 Using Vortex in Architecture Research
The Vortex infrastructure provides a complete implementation of a
GPU stack on an FPGA that enables the exploration of full-system
optimizations across the application, compiler, driver, and hard-
ware stacks in both desktop and SoC environments. To the best
of our knowledge, this is the first soft GPU implementation that
supports a PCIe interface, which opens new scenarios that deal
with CPU/GPU communication, command buffer management, and
kernel offloading. Its high-bandwidth cache subsystem connected
to the FPGA multi-bank memory system (2 on A10 and 8 on S10)
provides a solid platform for exploring memory optimizations. Vor-
tex can be easily extended to evaluate on HBM based FPGAs [67]
to further evaluate different memory systems. The simulation tools
in Section 4.5 enable the design-space exploration of more complex
architectures that cannot fit on FPGAs. Figure 21 shows the effect
of memory scaling for a 16-core, 16-wavefront, 16-thread processor
configuration as we increase the memory latency and bandwidth
using SIMX (Section 4.5) with the baseline RTL design parameters.

6.6 Porting Vortex to ASIC Design Flow
A solid simulation platform coupled with a comprehensive FPGA
prototyping environment provides a robust infrastructure for ex-
ploring ASIC development. Early during Vortex development [24],
we synthesized an 8-wavefront-4-thread single-core Vortex config-
uration using a 15-nm educational cell library, obtaining a 46.8mW
design running at 300 MHz. (See Figure 16 and Figure 17 for the
GDS layout and power design distribution, respectively). However,
Vortex’s microarchitecture was optimized for FPGAs, and porting

10

GPGPU ISA Exec
Model

Cache
System

Memory
System

Graphics
Suppport

Threads
x Cores RTL Host

Interface
Software
Stack

Cycle-level
Simulation

HWACHA RISCV Vector L1,L2 Simulated No N/A Yes No N/A No
Simty RISCV SIMT No No No 1x1 Yes No N/A No

MIAOW AMD SIMT No Simulated No N/A Yes N/A OpenCL No
FlexiGrip Custom SIMT sharedm Simulated No 32x1 Yes SoC Custom No
FGPU Custom SIMT L2 FPGA No 64x8 Yes SoC Custom No

NyuziRaster Custom SIMT L1,L2 FPGA Fixed-Function
Rasterizer 4x1 Yes N/A Custom No

Vortex RISCV SIMT sharedm
L1,L2,L3 FPGA Shaders

Texture Units 16x32 Yes PCIe OpenCL
OpenGL Yes

Table 6: Comparisons of open-source GPPGUs.

the design to ASIC requires changes to address platform differences
with FPGAs such as clock tree, reset distribution, power manage-
ment, memories, and performance, which is outside the scope of
our current work.

7 RELATEDWORK
Table 6 contrasts Vortex with other open-source GPGPU imple-
mentations, highlighting the provided features and performance
characteristics. The details about each project and comparison with
Vortex are summarized below.

7.1 RISC-V extension to support GPGPU/GPU
HWACHA [45] and ARA [18] are RISC-V-based co-processors that
implement an SIMD execution model, where vector instructions
are streamed into vector lanes. Their design is based on the open-
source RISC-V Vector ISA Extension proposal [6] taking advantage
of its vector-length agnostic ISA and its relaxed architectural vector
registers.

Simty [21] implements a specialized RISC-V architecture that
supports SIMT execution similar to Vortex. However, in the authors’
work, only the microarchitecture was implemented as a proof of
concept without any software stack.

7.2 FPGA based GPUs
MIAOW [11] is an FPGA soft GPU that implements the AMD
Southern Islands GPGPU ISA and is capable of running unmodi-
fied OpenCL-based applications. The authors proposed a partial
architecture in which most of the on-chip network and memory
subsystem are simulated. Their main goal was to provide the clos-
est realistic implementation of the reference architecture for the
components written in RTL. On the other hand, the goal of Vortex
is not to replicate a specific GPGPU architecture but instead to
provide a complete comparable implementation that is optimized
for FPGAs. Furthermore, MIAOW doesn’t support graphics.

FlexiGrip [4], FGPU [1], and Harmonica [40] are also soft GPUs
that are implemented for FPGAs. They all have an SIMT-based
architecture, but they have their own custom ISA, which requires

porting existing applications and benchmarks. They do not support
graphics.

7.3 Soft GPUs with rendering
NyuziRaster [17] is an open-source soft GPU with graphics ren-
dering support. NyuziRaster integrates a simple multi-threaded
in-order processor that supports a custom ISA. NyuziRaster doesn’t
implement any texture unit and does texture sampling completely in
software. NyuziRaster implements a fixed-function rasterizer with
no programmable shader support. Vortex supports programmable
shaders via OpenGL that execute as parallel tiles on its compute
platform. It also has hardware accelerated texture sampling. Nyuzi-
Raster can support up to four threads in its processor design, while
Vortex can scale up to 512 total threads on FPGA.

8 CONCLUSION
By leveraging the fast-growing open-source community around
RISC-V and the open-source LLVM and POCL compilers, Vortex
tries to present a holistic approach for GPGPU research that ex-
plores new ideas at any part of the hardware and software stacks.
With its minimal ISA extensions, Vortex implements GPGPU func-
tionality and 3D graphics acceleration. This, along with its high-
bandwidth caches, and its elastic pipeline, enables a design that
achieves a high frequency on FPGAs. A configurable RTL and a
tightly coupled runtime stack allow for quick yet flexible experi-
mentation, which we hope is evident from the variety of evaluation
metrics we presented. We believe this will allow for increasingly
diverse and complex workloads to be deployed on Vortex, leading
to research on more realistic and meaningful scenarios. For future
work, we plan to extend Vortex’s compiler and runtime software to
support CUDA and Vulkan APIs. The support for the ASIC design
flow is also an essential roadmap to chip fabrication.

9 DEDICATION
We dedicate this work to the memory of our great advisor, col-
league, mentor, and dear friend, Prof. Sudhakar Yalamanchili. The
project was started with his vision of building an open source GPU
framework for research.

11

10 ACKNOWLEDGEMENT
This work was partially supported by Oak Ridge National Labo-
ratory and SiliconArts. We gratefully acknowledge the support
of Intel Corporation and NSF CCRI 2016701, NSF CNS 1815047
for providing FPGA resources. We would like to thank Ruei Ting
Chien, Kanghong Yan, Will Gulian, Jaewoong Sim, Liam Cooper,
Xingyang Li, Malik Burton, Carter Montgomery, Da Eun Shim,
Priyadarshini Roshan, Jaewon Lee, Ethan Lyons, Roye Eshed, Tae-
joon Park, Lingjun Zhu, Sung Kyu Lim, Han Ruobing for their con-
tribution to the Vortex project development. We also thank HPArch
group members, Jeff Young, Seyong Lee, Jeff Vetter, Chad Kersey,
and the anonymous reviewers for their feedback on improving the
paper.

REFERENCES
[1] M. Al Kadi, B. Janssen, and M. Huebner, “Fgpu: An simt-architecture for fp-

gas,” in Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2016, pp. 254–263.

[2] AMD, “Rdna 1.0 instruction set architecture,” https://developer.amd.com/wp-
content/resources/RDNA_Shader_ISA.pdf.

[3] ——, “Rdna 1.0 instruction set architecture,” http://developer.amd.com/wordpress/
media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf.

[4] K. Andryc, M. Merchant, and R. Tessier, “Flexgrip: A soft gpgpu for fpgas,” in
2013 International Conference on Field-Programmable Technology (FPT). IEEE,
2013, pp. 230–237.

[5] Arvind, “Bluespec: A language for hardware design, simulation, synthesis and
verification invited talk,” in Proceedings of the First ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, ser. MEMOCODE
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 249–. [Online].
Available: http://dl.acm.org/citation.cfm?id=823453.823860

[6] K. Asanovic, RISC-V Vector Extension. [Online]. Available: https://github.com/
riscv/riscv-v-spec/blob/master/v-spec.adoc

[7] K. Asanović and D. A. Patterson, “Instruction sets should be free: The case for
risc-v,” EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2014-146, 2014.

[8] M. Asiatici and P. Ienne, “Stop crying over your cache miss rate: Handling
efficiently thousands of outstanding misses in fpgas,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2019,
pp. 310–319.

[9] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis, J. Wawrzynek,
and K. Asanović, “Chisel: Constructing hardware in a scala embedded language,”
in Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, June 2012,
pp. 1212–1221.

[10] A. Bakhoda, G. L. Yuan, W.W. Fung, H.Wong, and T. M. Aamodt, “Analyzing cuda
workloads using a detailed gpu simulator,” in 2009 IEEE International Symposium
on Performance Analysis of Systems and Software. IEEE, 2009, pp. 163–174.

[11] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph, J. Menon, M. P.
Drumond, R. Paul, S. Prasad, and P. Valathol, “Miaow-an open source rtl imple-
mentation of a gpgpu,” in 2015 IEEE Symposium in Low-Power and High-Speed
Chips (COOL CHIPS XVIII). IEEE, 2015, pp. 1–3.

[12] L. Bishop, “Opengl es 1.1, 2.0 and egl,” in ACM SIGGRAPH 2006 Courses, 2006, pp.
3–es.

[13] T. Blaise, S. Lee, J. Vetter, and H. Kim, “Bringing opencl to commodity risc-v cpus,”
in 2021 Workshop on RISC-V for Computer Architecture Research (CARRV), 2021.

[14] I. Bratt, “The arm® mali-t880 mobile gpu,” in 2015 IEEE Hot Chips 27 Symposium
(HCS). IEEE, 2015, pp. 1–27.

[15] J. Burgess, “Rtx on—the nvidia turing gpu,” IEEE Micro, vol. 40, no. 2, pp. 36–44,
2020.

[16] J. Bush, P. Dexter, T. N. Miller, and A. Carpenter, “Nyami: a synthesizable gpu
architectural model for general-purpose and graphics-specific workloads,” in 2015
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2015, pp. 173–182.

[17] J. Bush, M. A. Khasawneh, K. Z. Mahmoud, and T. N. Miller, “Nyuziraster: Opti-
mizing rasterizer performance and energy in the nyuzi open source gpu,” in 2016
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, 2016, pp. 204–213.

[18] M. A. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini, “Ara: A 1
GHz+ scalable and energy-efficient RISC-V vector processor with multi-precision
floating point support in 22 nm FD-SOI,” CoRR, vol. abs/1906.00478, 2019.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A benchmark suite for heterogeneous computing,” in 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2009, pp. 44–54.

[20] J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski, “Impact
of cache architecture and interface on performance and area of fpga-based
processor/parallel-accelerator systems,” in 2012 IEEE 20th International Sym-
posium on Field-Programmable Custom Computing Machines. IEEE, 2012, pp.
17–24.

[21] S. Collange, “Simty: generalized simt execution on risc-v,” in First Workshop on
Computer Architecture Research with RISC-V (CARRV 2017), 2017, p. 6.

[22] J. Cortadella, M. Galceran-Oms, and M. Kishinevsky, “Elastic systems,” in Eighth
ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2010). IEEE, 2010, pp. 149–158.

[23] V. M. Del Barrio, C. González, J. Roca, A. Fernández, and E. Espasa, “Attila: a
cycle-level execution-driven simulator for modern gpu architectures,” in 2006
IEEE International Symposium on Performance Analysis of Systems and Software.
IEEE, 2006, pp. 231–241.

[24] F. Elsabbagh, B. Tine, P. Roshan, E. Lyons, E. Kim, D. E. Shim, L. Zhu, S. K.
Lim, and H. Kim, “Vortex: Opencl compatible RISC-V GPGPU,” CoRR, vol.
abs/2002.12151, 2020. [Online]. Available: https://arxiv.org/abs/2002.12151

[25] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark
silicon and the end of multicore scaling,” in 2011 38th Annual International Sym-
posium on Computer Architecture (ISCA), June 2011, pp. 365–376.

[26] J. P. Ewins, M. D. Waller, M. White, and P. F. Lister, “Mip-map level selection
for texture mapping,” IEEE Transactions on Visualization and Computer Graphics,
vol. 4, no. 4, pp. 317–329, 1998.

[27] K. Fatahalian, “Lecture 15: Optimizing data access in the graphics pipeline,”
http://cs348k.stanford.edu/fall18/lecture/gfxmemory.

[28] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp formation
and scheduling for efficient gpu control flow.” IEEE Computer Society, 2007, pp.
407–420.

[29] Google, “Google stadia,” https://stadia.google.com/, 2019.
[30] Green500, “Green500 list - june 2019,” 2019. [Online]. Available: https:

//www.top500.org/lists/2019/06/
[31] A. A. Gubran and T. M. Aamodt, “Emerald: graphics modeling for soc systems,” in

Proceedings of the 46th International Symposium on Computer Architecture, 2019,
pp. 169–182.

[32] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane, J. Kalamatianos,
O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D. Sinclair, M. Wyse, J. Yin,
X. Zhang, A. Jain, and T. Rogers, “Lost in abstraction: Pitfalls of analyzing gpus at
the intermediate language level,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018, pp. 608–619.

[33] Y. Huang, P. Ienne, O. Temam, Y. Chen, and C. Wu, “Elastic cgras,” in Proceedings
of the ACM/SIGDA international symposium on Field programmable gate arrays,
2013, pp. 171–180.

[34] H. Igehy, M. Eldridge, and K. Proudfoot, “Prefetching in a texture cache archi-
tecture,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, 1998, pp. 133–ff.

[35] Intel, “Intel graphics hardware specifications,” https://01.org/linuxgraphics/
documentation/hardware-specification-prms.

[36] ——, “the open programmable acceleration engine (opae),” https://01.org/opae,
2018.

[37] P. Jaaskelainen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala, and H. Berg,
“POCL: Portable computing language,” International Journal of Parallel Program-
ming, pp. 752–785, 2015.

[38] M. R. Kakoee, V. Petrovic, and L. Benini, “A multi-banked shared-l1 cache archi-
tecture for tightly coupled processor clusters,” in 2012 International Symposium
on System on Chip (SoC). IEEE, 2012, pp. 1–5.

[39] M. Kenzel, B. Kerbl, W. Tatzgern, E. Ivanchenko, D. Schmalstieg, and
M. Steinberger, “On-the-fly vertex reuse for massively-parallel software
geometry processing,” PACMCGIT, vol. 1, no. 2, pp. 28:1–28:17, 2018. [Online].
Available: https://doi.org/10.1145/3233303

[40] C. D. Kersey, H. Kim, and S. Yalamanchili, “Lightweight simt core designs for
intelligent 3d stacked dram,” in Proceedings of the International Symposium on
Memory Systems, ser. MEMSYS ’17. ACM, 2017, pp. 49–59. [Online]. Available:
http://doi.acm.org/10.1145/3132402.3132426

[41] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho, “Macsim: A
cpu-gpu heterogeneous simulation framework user guide,” Georgia Institute of
Technology, 2012.

[42] C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for fpgas,” in
Proceedings of the 18th annual ACM/SIGDA international symposium on Field
programmable gate arrays, 2010, pp. 41–50.

[43] S. Laine and T. Karras, “High-performance software rasterization on gpus,” in
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,
2011, pp. 79–88.

[44] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong program
analysis amp; transformation,” in International Symposium on Code Generation
and Optimization, 2004. CGO 2004., March 2004, pp. 75–86.

[45] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović, and K. Asanović,
“A 45nm 1.3ghz 16.7 double-precision gflops/w risc-v processor with vector accel-
erators,” in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC),

12

https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
https://developer.amd.com/wp-content/resources/RDNA_Shader_ISA.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
http://dl.acm.org/citation.cfm?id=823453.823860
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://arxiv.org/abs/2002.12151
http://cs348k.stanford.edu/fall18/lecture/gfxmemory
https://stadia.google.com/
https://www.top500.org/lists/2019/06/
https://www.top500.org/lists/2019/06/
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/linuxgraphics/documentation/hardware-specification-prms
https://01.org/opae
https://doi.org/10.1145/3233303
http://doi.acm.org/10.1145/3132402.3132426

Sep. 2014, pp. 199–202.
[46] A. Lier, M. Stamminger, and K. Selgrad, “Cpu-style simd ray traversal on gpus,”

in HPG ’18, 2018.
[47] LunarG, “Lunarglass shader compiler stack,” https://www.lunarg.com/, 2019.
[48] M. Mantor, “Amd radeon™ hd 7970 with graphics core next (gcn) architecture,”

in 2012 IEEE Hot Chips 24 Symposium (HCS). IEEE, 2012, pp. 1–35.
[49] Microsoft, “Microsoft xcloud,” https://www.xbox.com/en-US/xbox-game-

streaming/project-xcloud/, 2019.
[50] A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21 Symposium

(HCS), Aug 2009, pp. 1–314.
[51] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,

“Improving gpu performance via large warps and two-level warp scheduling,” ser.
MICRO-44. ACM, 2011, pp. 308–317.

[52] NVIDIA, “PTX: Parallel thread execution isa version 2.3,” http://developer.nvidia.
com/compute/cuda, 2010.

[53] R. T. Possignolo, E. Ebrahimi, H. Skinner, and J. Renau, “Fluidpipelines: Elastic
circuitry without throughput penalty,” in Logic Synthesis (IWLS), Proceedings of
the 2016 International Workshop on, 2016.

[54] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood, “gem5-gpu: A hetero-
geneous cpu-gpu simulator,” IEEE Computer Architecture Letters, vol. 14, no. 1, pp.
34–36, 2014.

[55] K. Roarty and M. D. Sinclair, “Modeling modern gpu applications in gem5,” in
gem5 Users Workshop, 2020.

[56] B. Sander and A. S. FELLOW, “Hsail: Portable compiler ir for hsa.” in Hot Chips
Symposium, 2013, pp. 1–32.

[57] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010.

[58] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin et al., “Larrabee: a many-core x86 architecture for
visual computing,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–15,
2008.

[59] W. Snyder, “Verilator,” https://www.veripool.org/wiki/verilator.
[60] R. Sommefeldt, “A look at the powervr graphics architecture: Tile-based render-

ing,” 2015.
[61] I. Technologies, “Powervr instruction set reference. rev 1.0,” http://cdn.imgtec.

com/sdk-documentation/PowerVR+Instruction+Set+Reference.pdf.
[62] B.-P. Tine, S. Yalamanchili, and H. Kim, “Tango: an optimizing compiler for just-

in-time rtl simulation,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 157–162.

[63] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A simulation
framework for cpu-gpu computing,” in 2012 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT), 2012, pp. 335–344.

[64] E. Vasiou, K. Shkurko, E. Brunvand, and C. Yuksel, “Mach-RT: A Many Chip Ar-
chitecture for Ray Tracing,” in High-Performance Graphics - Short Papers, M. Stein-
berger and T. Foley, Eds. The Eurographics Association, 2019.

[65] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci, “RTX Beyond Ray
Tracing: Exploring the Use of Hardware Ray Tracing Cores for Tet-Mesh Point
Location,” in High-Performance Graphics - Short Papers, 2019.

[66] L.-Y. Wei, “Tile-based texture mapping on graphics hardware,” in Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, 2004, pp.
55–63.

[67] M. Wissolik, D. Zacher, A. Torza, and B. Da, “Virtex ultrascale+ hbm fpga: A
revolutionary increase in memory performance,” Xilinx Whitepaper, 2017.

[68] H.-J. Yoo, J.-H. Woo, J.-H. Sohn, and B.-G. Nam, Mobile 3D graphics SoC: From
algorithm to chip. John Wiley & Sons, 2010.

13

https://www.lunarg.com/
https://www.xbox.com/en-US/xbox-game-streaming/project-xcloud/
https://www.xbox.com/en-US/xbox-game-streaming/project-xcloud/
http://developer.nvidia.com/compute/cuda
http://developer.nvidia.com/compute/cuda
https://www.veripool.org/wiki/verilator
http://cdn.imgtec.com/sdk-documentation/PowerVR+Instruction+Set+Reference.pdf
http://cdn.imgtec.com/sdk-documentation/PowerVR+Instruction+Set+Reference.pdf

	Abstract
	1 Introduction
	2 Background on Graphics
	3 GPU ISA
	3.1 Taxonomy of GPGPU ISA
	3.2 Vortex ISA

	4 Hardware Implementation
	4.1 Vortex Microarchitecture
	4.2 3D Graphics Support
	4.3 High-Bandwidth Caches
	4.4 Elastic Pipelines
	4.5 Hardware Simulation

	5 software Support
	5.1 Vortex Driver Stack
	5.2 OpenCL Compiler and Runtime
	5.3 Vortex Native Runtime
	5.4 POCL Backend Compiler
	5.5 Graphics Support

	6 Evaluation
	6.1 Experimental Setup
	6.2 Microarchitecture
	6.3 High-bandwidth Cache
	6.4 Texture Sampling
	6.5 Using Vortex in Architecture Research
	6.6 Porting Vortex to ASIC Design Flow

	7 Related Work
	7.1 RISC-V extension to support GPGPU/GPU
	7.2 FPGA based GPUs
	7.3 Soft GPUs with rendering

	8 Conclusion
	9 Dedication
	10 Acknowledgement
	References

